\qquad

1. Graphically speaking, if $f(x)$ is always above the x-axis, what does $\int_{a}^{b} f(x) d x$ mean?
2. Given the graph of $f(x)$ below, answer the following questions.
a) Is $\int_{a}^{b} f(x) d x$ positive, negative, or zero? Why?
b) Is $\int_{b}^{c} f(x) d x$ positive, negative, or zero? Why?

c) Is $\int_{a}^{c} f(x) d x$ positive, negative, or zero? Why?
3. The graph of $y=x^{3}$ is given below. Use it and the fact that $\int_{0}^{1} x^{3} d x=\frac{1}{4}$ to evalute each of the following.
a)

b) $\int_{0}^{1}\left(x^{3}+3\right) d x$
c) $\int_{0}^{1}\left(x^{3}-1\right) d x$

4. Draw a sketch and shade the area indicated by each integral, then use geometry to evalute the integral.
a) $\int_{1}^{4}(-2 x+4) d x$
b) $\int_{-4}^{0} \sqrt{16-x^{2}} d x$
c) $\int_{-1}^{1}(2-|x|) d x$
5. If $\int_{2}^{4} f(x) d x=18$, then find $\int_{2}^{5}(f(x)+4) d x$
6. Draw a sketch for the area enclosed between the x-axis and the graph of $y=4-x^{2}$ over $[-2,2]$. Set up an integral to find the area of the region and use your calculator to evaluate the integral.
7. Approximate the area under the curve defined by $y=x^{2}-2 x+3$ from $[-1,3]$ using the left rectangular approximation method with 4 subintervals of equal length.
8. The function f is continuous over the closed interval $[0,10]$ and has values that are given in the table.

x	0	2	5	7	10
$f(x)$	2	3	5	7	8

Using 4 subintervals, find each of the following approximations for the area under the curve from $[0,10]$.
a) LRAM
b) RRAM
c) Trapezoid

