
AB Calculus Definite Integrals Notesheet Name: ______________________________________________ 

 

Find the area of the following shapes 
 

 

 

 

 

 
 
 

Area: ___________________ 

 
 

Area: ___________________ 

 
 

Area: ___________________ 

 

Time 
(milliseconds) 

0 5 10 15 20 25 30 

Light Output 
(millions of 
lumens) 

0 0.2 0.6 2.6 4.2 3 1.8 

 
The data in the table represents the rate of light output of a flash bulb at a given time. Find four possible 
estimates for the total light output of the bulb, measured in million lumen milliseconds. First, find the LRAM, 
RRAM, and TRAP approximations with 6 equal subintervals. Second, find MRAM using 3 equal subintervals. 
 
LRAM =  
 
 
RRAM = 
  
 
Trapezoid 
  
 
MRAM = 
  
 

Introduction 

 

In the last section we found the area under a curve by finding the area of a finite number of rectangles (LRAM, 

RRAM, and MRAM) or a finite number of trapezoids (Trapezoid Rule). Every one of these was an example of 

what is called a Riemann Sum. We are going to stick with rectangles for the time being. 

The following steps illustrate what has to happen in order for the sum to be considered a Riemann Sum: 

 

Step 1: Start with a continuous function on a closed interval. 

Step 2: Partition the interval into n subintervals. The kth subinterval has width ∆𝑥𝑘. They can be different. 

Step 3: In each subinterval, pick any number and call the number picked from the kth subinterval 𝑐𝑘 LRAM picked 

the left endpoint … RRAM picked the right endpoint … MRAM picked the midpoint) 

Step 4: For each interval, using the width, ∆𝑥𝑘, of the interval as the base, create a rectangle that extends from 

the x-axis to the function value, 𝑓(𝑐𝑘), of the number you picked in each interval. (Note: Some of these 

rectangles could lie below the x-axis). 

Step 5: On each interval, form the product 𝑓(𝑐𝑘) ∙ ∆𝑥𝑘 



Note: If all of our rectangles lie above the x-axis, this would have been the area of each rectangle. 

Step 6: Find the sum of each of these products. 

𝑓(𝑐1) ∙  ∆𝑥1 + 𝑓(𝑐2) ∙  ∆𝑥2 + 𝑓(𝑐3) ∙  ∆𝑥3 + 𝑓(𝑐4) ∙  ∆𝑥4 + ⋯ + 𝑓(𝑐𝑛) ∙  ∆𝑥𝑛 = ∑ 𝑓(𝑐𝑘) ∙  ∆𝑥𝑘

𝑛

𝑘=1

 

 

 
 

Following these steps gives you a Riemann Sum for f on the interval [a, b]. Every Riemann Sum depends on the 

partition you choose (i.e. the number of subintervals) and your choice of the number within each interval, 𝑐𝑘. 

 

Definite Integral as a Limit of a Riemann Sum 

 

A Definite Integral is defined as a limit of a Riemann Sum. 

 

Option #1: If you noticed in step 2 above, we did not care if our subintervals were the same width. If we use the 

notation ‖𝑃‖ to denote the longest subinterval length we can force the longest subinterval length to 0 using a 

limit of the Riemann Sum as follows: 

 

lim
‖𝑃‖→0

∑ 𝑓(𝑐𝑘) ∙  ∆𝑥𝑘

𝑛

𝑘=1

 

 

Option #2: If we make sure the subintervals are all the same width, we can increase the number of rectangles to 

infinity using a limit of the Riemann Sum as follows: 

 

lim
𝑛→∞

∑ 𝑓(𝑐𝑘) ∙  ∆𝑥

𝑛

𝑘=1

 

 

Notation for Definite Integrals 

 

The limit notation we used last is the form we will use to develop Integral notation. As the number of rectangles 

goes to infinity, the width of each rectangle, ∆𝑥, goes to zero. We are going to use the notation dx to represent 

this infinitely tiny distance. 

 

The summation notation of sigma is going to be replaced with an Integral Sign, ∫, which looks somewhat like a 

giant “S” for sum. 



The 𝑓(𝑐𝑘) which represented a different function value for each interval is going to be replaced with 𝑓(𝑥) since 

the x-values are going to be soooooo close together it is almost as if we were evaluating the function for every x-

value in the interval [a, b]. Combining all of this we have the following notation: 

 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

 

We read the above notation above as “The Integral of f of x from a to b” 

 

Important Note (Actually, it’s a theorem): If the function is continuous, then the definite integral will exist. 

However, the converse, while true some of the time, is not always true (Calculus BC!) 

 

Using Definite Integrals as Area 

 

We can define the area under the curve y = f(x) from a to b as an integral from a to b … 

As long as the curve is nonnegative and integrable on the closed interval [a, b]. 

 

Drawing a picture and using geometry is still a valid method of finding areas! 

 

Example 1: For each of the following examples, sketch a graph of the function, shade the area you are trying to 

find, then use geometric formulas to evaluate each integral. 

 

a) 
∫ 3

9

2

𝑑𝑥 
b) 

∫ |𝑥|
1

−2

𝑑𝑥 
c) 

∫ √9 − 𝑥2
3

−3

𝑑𝑥 

 
 
 
 
 
 
 
 

 

So … what happens if the “area” is below the x-axis … as I mentioned before, area is inherently positive, but a 

Riemann Sum … and therefore an integral can have negative values if the curve lies below the x-axis. 

 

Example 2: Consider the function 𝑓(𝑥) = 3 − 𝑥. Sketch a graph 
of this function. 
A) What is the area between the curve and the x-axis between 

x = 4 and x = 8? 
 
 
 

B) ∫ (3 − 𝑥
8

4
)𝑑𝑥 

 

 



Example 3: Given ∫ sin 𝑥
𝜋

0
𝑑𝑥 = 2, use what you know about the sine function to evaluate the following 

integrals. 

 

a) 
∫ sin 𝑥

2𝜋

𝜋

𝑑𝑥 

 
 
 

b) 
∫ sin 𝑥

2𝜋

0

𝑑𝑥 
c) 

∫ sin 𝑥

𝜋
2

0

𝑑𝑥 

d) 
∫ sin 𝑥

𝜋

−𝜋

𝑑𝑥 
e) 

∫ (2 + sin 𝑥)
𝜋

0

𝑑𝑥 
  

 

The fnInt Function On Your Calculator 

 

By this point, hopefully you understand the following concepts: 

 

1. The limit of a Riemann Sum is used to define a Definite Integral 

2. A Definite Integral can be used to find the area under a curve if the curve is above the x-axis. If the curve is 

below the x-axis, the value of the definite integral is the negative of the value of the area. 

3. Since the definite integral can be thought of as area, you can draw a picture and use geometric formulas to 

find the areas. 

 

BUT … what happens if you were asked right now, this instant, today to find the definite integral of a function 

that doesn’t lend itself to nice geometric shapes? The good news for now, is that you don’t even have to worry 

about how to do these by hand … Yet! You get to use your calculator! … at least for today! 

 

How to use your calculator to find a definite integral: 

 

On TI-83 Family or TI-84 with old OS On TI-84 Family with new OS 

1. Press MATH 
2. Select 9:fnInt( 
3. The syntax is as follows: 

 
 
fnInt( function, x, lower bound, upper bound) 

1. Press MATH 
2. Select 9:fnInt( 
3. The syntax is as follows: 

 

∫ (𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏) 𝒅𝑿
𝒖𝒑𝒑𝒆𝒓 𝒃𝒐𝒖𝒏𝒅

𝒍𝒐𝒘𝒆𝒓 𝒃𝒐𝒖𝒏𝒅

 

 

Example 4: Evaluate ∫ (𝑥2 − 2𝑥 + 2)
3

1
𝑑𝑥 

 

Example 5: Evaluate 3 + 2 ∫ tan 𝑥
𝜋

3
0

𝑑𝑥 

 

You can do the same thing from the graphing screen Press 2nd Trace (which is CALC), 7: ∫ 𝑓(𝑥) 𝑑𝑥, enter lower 

bound as 1, enter upper bound as 8. The down side to using this method is that you must be able to set your 

window to see everything. 

 

Example 6: Graph 𝑦 = √𝑥 on a standard viewing window (Zoom: 6). Evaluate ∫ √𝑥
8

1
𝑑𝑥 


