1. Find two positive numbers such that the sum of the first and twice the second is 100 and their product is a maximum.
2. If 40 passengers hire a special car on a train, they will be charged $\$ 8$ each. This fare will be reduced by $\$ 0.10$ for each passenger, if the number of passengers is over 40 . What number of passengers will produce the most revenue for the railroad?
3. An athletic field is to be built in the shape of a rectangle x units long capped by semicircular regions of radius r at the two ends. The field is to be bounded by a 400-m running track. What values of x and r will give the rectangle the largest possible area?
4. An offshore well is located in the ocean at a point W which is six miles from the closes shore point A on a straight shoreline. The oil is to be piped to a shore point B that is eight miles from A by piping it on a straight line under water from W to some shore point P between A and B and then on to B via a pipe along the shoreline. If the cost of laying pipe is $\$ 100,000$ per mile underwater and $\$ 75,000$ per mile over land, how far from A should the point P be located to minimize the cost of laying the pipe? What will the cost be?

5. A function f is continuous on the closed interval $[-3,3]$ such that $f(-3)=4$ and $f(3)=1$. The functions f^{\prime} and $f^{\prime \prime}$ have the properties given in the table below.

x	$-3<x<-1$	$x=-1$	$-1<x<1$	$x=1$	$1<x<3$
$f^{\prime}(x)$	positive	does not exist	negative	0	negative
$f^{\prime \prime}(x)$	positive	does not exist	positive	0	negative

a) What are the x-coordinates of all relative maximum and minimum points of f on the interval $(-3,3)$? Justify your answer.
b) What are the x-coordinates of all points of inflection of f on the interval $[-3,3]$? Justify your answer.
c) For what values of x is the graph concave down? Justify your answer.
d) On the axes provided, sketch a graph that satisfies the given conditions of f. Answers may vary slightly.

