Lesson Area between Curves:

U-Substitution: https://www.geogebra.org/m/YPSNUfpm
Area b/w curves General: https://www.geogebra.org/m/YCt3bvBE
Area b/w curves Specific: https://www.geogebra.org/m/rdjwwd3z
*Logic Game: https://www.geogebra.org/m/pjPgJdhV

U-Substitution: Recall to solve some integral U-substitution is required. This is considered a "reverse chain rule" its not the only way to solve but it's a way the we have focused on in class.
$\int f(g(x)) g^{\prime}(x) d x \quad u=g(x) \quad d u=g^{\prime}(x)$ so the integral we are now dealing with is $\int f(u) d u$
This should be a simpler function to integrate. If we are find the general or particular solution then we need to "back substitute u " in order for our function to be in terms of the original variable.

Example: $\int 3(8 y-1) e^{4 y^{2}-y} d y \quad$ Yes its in terms of y but it doesn't change the process, feel free to change to x.
$u=4 y^{2}-y$, it's inside the exponential function $d u=8 y-1 d y$ (convenient)

$$
3 \int e^{u} d u=3 e^{u}+c=3 e^{4 y^{2}-y}+C
$$

So our general solution is $3 e^{4 y^{2}-y}+C$
A particular solution relies on some given condition: such as $F(0)=3$ or $F(1)=10$ where $F(y)$ is the antiderivative. Basically you use the given condition to solve for the constant C .

Given $F(0)=16$ solve for the particular solution, $3 e^{4(0)^{2}-0}+C=16 \rightarrow 3+C=16 \rightarrow C=13$
SO the particular solution is $\mathbf{3} \boldsymbol{e}^{4 y^{2}-y}+\mathbf{1 3}$

Changing Bounds as you see in the U-Substitution link to GeoGebra
If solving the definite integral then you can go through the "back substitution" process using same bounds or you can change the bounds using the defined " U " and integrate normally using the Fundamental theorem of calculus.

Example: $\int_{-2}^{0} 2 t^{2} \sqrt{1-4 t^{3}} d t \quad U=1-4 t^{3} \quad \boldsymbol{d u}=-12 t^{2} d t$
$2 \int_{-2}^{0} t^{2} \sqrt{1-4 t^{3}} d t \quad 2\left(-\frac{\mathbf{1}}{\mathbf{1 2}}\right) \int \sqrt{u} d u \rightarrow$ Antiderivative of $\sqrt{u}=u^{\frac{1}{2}} \rightarrow \frac{1}{\frac{3}{2}} u^{\frac{3}{2}}=\frac{2}{3} u^{\frac{3}{2}}$
Here is where integrate and make our choice, to change the bounds or keep them the same by "back substituting"

Changing the bounds: $u=1-4 t^{3} \rightarrow$
New Lower bound: $1-4(-2)^{3}=1-(4 *-8)=1--32=33$
New Upper bound: $1-4(0)^{3}=1$
$-\frac{1}{6}\left(\frac{2}{3} u^{\frac{3}{2}}\right)$ from 33 to $1 \rightarrow-\frac{1}{9}\left(u^{\frac{3}{2}}\right)$ from 33 to $1=-\frac{1}{9}-\left(-\frac{1}{9}(33)^{\frac{3}{2}}\right)=$

If you back substituted, you should get the same result but your function would be

$$
-\frac{1}{9}\left(1-4 t^{3}\right)^{\frac{3}{2}} \text { from }-2 \text { to } 0
$$

