Limits and Continuity Practice Test

1. Find $\lim _{x \rightarrow 0} \frac{6 x^{5}-8 x^{3}}{9 x^{3}-6 x^{5}}$
a. $\frac{2}{3}$
C. $\frac{4}{3}$
b. $-\frac{8}{9}$
d. $-\frac{8}{3}$
e. Nonexistent
2. $\lim _{x \rightarrow-\infty}(5 x-1)=$
3. The function f is given by $f(x)=\frac{a x^{4}+6}{x^{4}+b}$. The figure to the right shows a portion of the graph of f. Which of the following could be the values of the constants a and b ?
a. $\quad a=-3, b=-1$
b. $\quad a=3, \quad b=1$
c. $\quad a=3, \quad b=-1$
d. $\quad a=3, \quad b=-1$
e. $a=6, b=-1$

4. Find $\lim _{x \rightarrow-\infty} \frac{(3 x-1)\left(x^{2}-4\right)}{(2 x+1)^{2}(x-1)}$
a. $-\frac{3}{2}$
b. $\frac{3}{2}$
C. $\frac{3}{4}$
d. 1
e. ∞
5. The functions f and g are continuous. The function h is given by $h(x)=f(g(x))-x$. The table below gives values of the functions. Explain why there must be a value for t for $1<t<4$ such that $h(t)=-1$.

x	$\mathbf{1}$	2	3	4
$f(x)$	0	8	-3	6
$g(x)$	3	7	-1	2

6. Let $F(x)= \begin{cases}\frac{x^{2}-5 x-6}{x-6}, & x \neq 6 \\ 3 k+2, & x=6\end{cases}$
a. Find $\lim _{x \rightarrow 6} F(x)$. Show all proper steps.
b. Find the value k such that $\lim _{x \rightarrow 6} F(x)=F(6)$. Show all work.
7. The figure shows the graph of $f(x)$. Which of the following statements are true?
I. $\lim _{x \rightarrow 1^{-}} f(x)$ exists
II. $\lim _{x \rightarrow 1^{+}} f(x)$ exists
III. $\lim _{x \rightarrow 1} f(x)$ exists
a. I only
d. I, II, and III only
b. II only
e. None are true
c. I and II only

8. $\lim _{x \rightarrow 5} \frac{x}{x-5}=$
9. Given $f(x)=\frac{6 x+1}{\sqrt{4 x^{2}+6 x+9}}$, write an equation for any horizontal asymptote(s) of $f(x)$.
10. Given the function $f(x)=\frac{\frac{1}{x+5}-\frac{1}{5}}{x}$, determine $\lim _{x \rightarrow 0} f(x)$.
11. For the function $f(x)$ shown below, find $\lim _{x \rightarrow 0} f(x)$.

12. If $a \neq 0$ and n is a positive integer, then $\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x^{2 n}-a^{2 n}}$ is
a. $\frac{1}{a^{n}}$
c. $\frac{1}{a^{2 n}}$
e. Nonexistent
b. $\frac{1}{2 a^{n}}$
d. 0
13. What are all the horizontal asymptotes of $f(x)=\frac{6+3 e^{x}}{3-e^{x}}$ in the $x y$-plane?
a. $y=3$ only
b. $y=-3$ only
c. $y=2$ only
d. $y=-3$ and $y=0$
e. $y=-3$ and $y=2$
14. Given $f(x)=\left\{\begin{array}{ll}x^{2}-6, & x \geq 4 \\ 3 x-2, & x<4\end{array}\right.$, find $\lim _{x \rightarrow 4} f(x)$.
15. The straight-line function f is shown by the graph. Explain why there must be a value x between 0 and 4 such that $f(x)=\pi$.

16. For the function $f(x)$ graphed below, find $\lim _{x \rightarrow-\infty} f(x)$.

17. The graph of $f(x)=\sqrt{x^{2}+0.0001}-0.01$ is shown in the graph to the right. Which of the following statements are true?
I. $\lim _{x \rightarrow 0} f(x)=0$
II. f is continuous at $x=0$
III. $\quad f(0)$ is defined

a. I only
c. I and II only
e. None are true.
b. II only
d. I, II and III only
18. Let $f(x)=\frac{2}{x^{2}}$ and $g(x)=x^{2}-6$. Find $\lim _{x \rightarrow-\infty} f(x) \cdot g(x)$.
19. Let $f(x)$ be given by the function $f(x)=\left\{\begin{array}{cc}g(x)+a, & x \leq 0 \\ 3-b \cos x, & x>0\end{array}\right.$, where a and b are constants and $g(x)=1-x^{2}$. Show that $f(x)$ is continuous at $x=0$ if $a=1$ and $b=1$.
20. For the function $f(x)$ shown to the right, find $\lim _{x \rightarrow 3} f(x)$.

