

Name_

Seat # _____ Date _

Properties of Definite Integrals

1. Given
$$\int_{0}^{5} f(x) dx = 10$$
 and $\int_{5}^{7} f(x) dx = 3$, find
a) $\int_{0}^{7} f(x) dx$
b) $\int_{5}^{0} f(x) dx$
c) $\int_{5}^{5} f(x) dx$
d) $\int_{0}^{5} 3f(x) dx$

2. Given
$$\int_{2}^{6} f(x) dx = 10$$
 and $\int_{2}^{6} g(x) dx = -2$, find
a) $\int_{2}^{6} [f(x) + g(x)] dx$
b) $\int_{2}^{6} [g(x) - f(x)] dx$
c) $\int_{2}^{6} 2g(x) dx$
d) $\int_{2}^{6} [2f(x) - 3g(x)] dx$

- 3. The graph of f(x) is shown. Evaluate each integral by interpreting it in terms of areas.
 - a) $\int_{0}^{7} f(x) dx$ b) $\int_{0}^{5} f(x) dx$ c) $\int_{5}^{7} f(x) dx$ d) $\int_{0}^{9} f(x) dx$

4. The graph of g(x) is shown. Evaluate each integral by interpreting it in terms of areas.

a)
$$\int_{0}^{2} g(x) dx$$

b) $\int_{2}^{6} g(x) dx$
c) $\int_{0}^{7} g(x) dx$

5. The graph of f(x) is shown. Evaluate each integral by using geometric formulas.

a)
$$\int_{0}^{2} f(x) dx$$

b) $\int_{2}^{6} f(x) dx$
c) $\int_{-4}^{2} f(x) dx$
d) $\int_{-4}^{6} f(x) dx$
e) $\int_{-4}^{2} |f(x)| dx$
f) $\int_{-4}^{2} [f(x) + 2] dx$

6. Consider the function f that is continuous in the interval [-5, 5] and for which $\int_{0}^{3} f(x) dx = 4$. Evaluate each integral.

a)
$$\int_{0}^{5} [f(x)+3] dx$$

b)
$$\int_{-2}^{3} f(x+2) dx$$
 (*Hint*: assume the graph for $f(x)$ is known, and sketch the graph of $f(x+2)$)
c)
$$\int_{-5}^{5} f(x) dx$$
 (f is even.)
d)
$$\int_{-5}^{5} f(x) dx$$
 (f is odd.)

In 7–10, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.

- 7. $\int_{a}^{b} [f(x) + g(x)] dx = \left[\int_{a}^{b} f(x) dx \right] + \left[\int_{a}^{b} g(x) dx \right]$
- 8. $\int_{a}^{b} [f(x) \cdot g(x)] dx = \left[\int_{a}^{b} f(x) dx\right] \cdot \left[\int_{a}^{b} g(x) dx\right]$
- 9. The value of $\int_{a}^{b} f(x) dx$ must be positive.
- 10. If $\int_{a}^{b} f(x) dx > 0$, then f is nonnegative for all x in [a, b].
- 11. Evaluate, if possible, the integral $\int_{0}^{z} \lfloor x \rfloor dx$ (*Hint*: sketch the graph of $y = \lfloor x \rfloor$ for $0 \le x \le 2$ first. Remember that $y = \lfloor x \rfloor$ is the greatest integer function and it always rounds down to the nearest integer value.)
- 12. Sketch the region whose area is given by the definite integral. Then use geometric formulas to evaluate the integral.

a)
$$\int_{-2}^{2} (1-|x|) dx$$
 b) $\int_{0}^{3} |3x-6| dx$